If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10t^2+50t+20=0
a = -10; b = 50; c = +20;
Δ = b2-4ac
Δ = 502-4·(-10)·20
Δ = 3300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3300}=\sqrt{100*33}=\sqrt{100}*\sqrt{33}=10\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{33}}{2*-10}=\frac{-50-10\sqrt{33}}{-20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{33}}{2*-10}=\frac{-50+10\sqrt{33}}{-20} $
| 11x+11=8x−2 | | 5+20x-2x=-13 | | -60.54(x+45.87)=3 | | 1/2(12g+8)=2(3g+2) | | x+122=115 | | 3(x+45.87)=-60.54 | | j⁄12=11 | | 7^2+24^2=c^2 | | 63=1+7a | | 0.7+r=12.35 | | r-19.1=-4.6 | | 2y+7=4y+3+2y | | -5x-5(-7-2x)=-20 | | 9n^2+2n-23=0 | | -5x-5(7+2x)=-20 | | -9m=94.5 | | x²-3=13+2x | | 7v+1=1 | | -6(4x-13)=6(-4x-13) | | C^2+6x-27=0 | | 4y+4=16-2y | | 4/11=x+58/77 | | (1)/(2)(x-76)=7+8x | | -15b=-9 | | 14a+a-11a=12 | | 225=9(4x) | | 9v-5=67 | | w+2w=24⇔24 | | 5+2x+7=10 | | 4x+10=9865x-4 | | 2k−6+3k=14 | | 40-8x=8(5x7) |